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Overview

This document presents the current design and implementation of control flow operators in
TensorFlow. This is a descriptive document based on the original design; please see the actual
implementation for details.
In this document we will:
e Introduce the five TensorFlow primitive operators that are added specifically to handle
control flow,
e Show how the high-level control-flow constructs get compiled down to dataflow graphs
that involve these five primitives,
e Explain how these dataflow graphs are executed by the TensorFlow runtime, including
distributed execution on a set of hybrid devices (e.g., CPU, GPU, and TPU), and
e Describe how automatic differentiation works for the control-flow constructs.

Control-Flow Primitives

The basic design principle of control flow in TensorFlow is to introduce a very small set of
simple, primitive operators that can be used to express complex flows of control for a wide
range of TensorFlow applications. We want these primitives to be flexible and expressive,
serving as a good compilation target for high-level domain specific languages (DSLs). They
should fit well with the dataflow model of TensorFlow, and should be amenable to parallel and
distributed execution and automatic differentiation. This section introduces these primitives.
There are five control-flow primitive operators as shown below. They closely resemble the
control-flow primitives introduced in the dataflow machines developed by Dennis and Arvind.
The combination of Switch and Merge allows us to implement conditionals. All five primitives
together allow us to implement while loops.
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In TensorFlow, every op is executed in an execution frame, and the control-flow primitives are
responsible for creating and managing these execution frames. Intuitively, for each while loop,
the TensorFlow runtime sets up an execution frame and runs all the ops belonging to the while
loop inside the execution frame. Execution frames can be nested. Nested while loops run in
nested execution frames. Ops from different execution frames can run in parallel as long as
there is no data dependency between them.

Switch: A Switch operator forwards the input tensor d to one of its outputs depending on the
boolean tensor of the control input p. A Switch is enabled for execution when both its inputs are
available.

Merge: A Merge operator forwards one of its available inputs to its output. A Merge is enabled
for execution when any of its inputs is available. It is unspecified which available input it outputs
if there are multiple inputs available.

Enter(name): An Enter operator forwards its input to the execution frame that is uniquely
identified by the given name. This Enter op is used to pass a tensor in one execution frame to a
child execution frame. There can be multiple Enter ops to the same child execution frame, each
making a tensor available (asynchronously) in that child execution frame. An Enter is enabled
for execution when its input is available. A new execution frame is instantiated in the
TensorFlow runtime when the first Enter op to that frame is executed.

Exit: An Exit operator forwards a value from an execution frame to its parent execution frame.
This Exit op is used to return a tensor computed in a child execution frame back to its parent
frame. There can be multiple Exit ops to the parent frame, each asynchronously passing a
tensor back to the parent frame. An Exit is enabled when its input is available.

(c) 2017 TensorFlow Authors. TensorFlow design document, last updated 2017/11/1



Nextlteration: A Nextlteration operator forwards its input to the next iteration in the current
execution frame. The TensorFlow runtime keeps track of iterations in an execution frame. Any
op executed in an execution frame has a unique iteration id, which allows us to uniquely identify
different invocations of the same op in an iterative computation. Note that there can be multiple
Nextlteration ops in an execution frame. The TensorFlow runtime starts iteration N+1 when the
first Nextlteration op is executed at iteration N. As more tensors enter an iteration by executing
Nextlteration ops, more ops in that iteration will be ready for execution. A Nextlteration is
enabled when its input is available.

Compilation of Control-Flow Constructs

With the addition of these five control-flow primitives, high-level programming constructs such as
cond and while_loop can now be compiled into dataflow graphs that can be executed by
TensorFlow runtime. We now look at how cond and while_loop are implemented in TensorFlow.

The cond Operator

Below is the high-level pseudocode of building the dataflow graph of cond(pred, fn1, fn2). For
simplicity, we ignore many important issues in real implementation. Readers may find the
implementation in control_flow_ops.py.

# Build the graph for the true branch
context t = CondContext (pred, branch=1)
res_t = context t.Call(fnl)

# Build the graph for the false branch
context f = CondContext (pred, branch=0)
res f = context f.Call(£fn2)

# Add the Merge nodes for the outputs
merges = [Merge([f, t]) for (f, t) in zip(res f, res t)]
return merges

For each branch of the cond, we create a new control-flow context for conditionals, and call its
graph construction function (fn1 or fn2) inside the context. The conditional context allows us to
capture any external tensors (not created in the context) and insert an appropriate Switch op to
guard its entering into a branch. This ensures that any ops in a branch will only be executed
when that branch is taken. Because of TensorFlow’s async execution model, those external
tensors may become available at very different times, so we use one Switch op for each
external tensor to maximize parallelism.

Each branch returns a list of tensors as result (ref_t or res_f); we then add a list of Merge nodes
to merge the the true and false values for each output, respectively. Again, the outputs may be
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computed at very different times, so we use one Merge op for each output, which allows us to
enable downstream computation as soon as possible.

T

As an example, let us look at a simple program.

Merge
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tf.condi(x < vy, lambda: tf.add(x, z), lambda: tf.sguare(y))

In the generated dataflow graph, the Switch ops are inserted to control the flow of tensors x, y,
and z. On the true/false branch, only the true/false outputs of the Switch ops are used. Since
the inputs of add are from the true output of the Switch ops, the Add op is only executed when x
<y is true. Similarly, the Square op is only executed when x <y is false. The final Merge op
emits either the result of the Add or the Square. If there are multiple outputs, there will be
multiple Merge ops, one for each output.

There are multiple ways to encode cond using Switch and Merge. We choose the current
encoding mainly because it makes automatic differentiation of cond simpler.

The while_loop Operator

Below is the high-level pseudocode of building the dataflow graph of while_loop(pred, body,
loop_vars):
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while context = WhileContext ()
while context.Enter()

# Add the Enter nodes for each loop variable.

enter vars = [Enter(x, frame name) for x in loop vars]

# Add the Merge nodes. Note that input[l] will be updated later.
merge vars = [Merge([x, x]) for x in enter vars]

# Build the loop pred subgraph.
pred result = pred(*merge vars)

# Add the Switch nodes.
switch vars = [Switch(x, pred result) for x in merge vars]

# Build the loop body subgraph.
body result = body(*[x[1] for x in switch vars])

# Add the NextIteration nodes.
next vars = [NextIteration(x) for x in body result]

# Form the cycles for the loop.
for m, v in zip(merge vars, next vars):
m.op. update input(l, v)

# Add the Exit nodes.
exit vars = [Exit(x[0]) for x in switch vars]
while context.Exit()

return exit vars

The entire while loop graph is created in a control-flow context for while loops. The basic idea
here is quite simple.

Starting from the loop variables, we add an Enter op and then a Merge op for each of them. We
then use the result (merge_vars) to build the pred subgraph, which computes the loop
termination condition.

After adding the Switch ops, we use the true outputs of the Switches to build the subgraph for
the body of the while loop. The results of the loop body need to go into the next iteration, so we
add the Nextlteration ops and connect them back to the second inputs of the Merge ops. This
forms cycles, allowing us to run the same op repeatedly many times when executing a graph.

The false outputs of the Switch ops are the outputs of the entire while loop, so we add the Exit
ops to them and return the outputs of the Exit ops. Similar to cond, the while loop context is
used to keep track of external tensors used in the pred and body lambdas. These external
tensors are treated as loop constants, and we automatically insert an Enter op for each such
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external tensor, making it accessible within the while loop context. Nested loops require adding
nested Enter ops.

Again, let us look at the generated graph for one of a simple program.
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tf.while loop(lambda i: i < 10, lambda i: tf.add{(i, 1), [0])

For this example, we have only one loop variable. If there are multiple loop variables, we will
have multiple Enter, Merge, Switch, Nextlteration, and Exit ops. This enables parallel executions
across multiple loops and across multiple iterations within a loop. You may notice that we omit
among other things to explain how the constants are handled in a while loop. Please look at the
real code if you want to understand the next level of details.

This translation of cond and while_loop supports arbitrary nestings of conditionals and loops.
For example, a loop body can call another while_loop, which will be translated recursively as a

nested subgraph. The translation ensures that each loop is statically assigned a unique frame
name.

Implementation
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The TensorFlow runtime is responsible for the execution of the dataflow graphs. Let us start
with a quick overview.

To run on multiple devices, TensorFlow automatically assigns the ops to the set of devices.
Based on the device placement, TensorFlow automatically partitions the dataflow graph into a
set of subgraphs, one per device. When an edge is broken by the partitioning, we
automatically insert a pair of send and recv nodes for transporting tensors across devices. A
pair of send and recv communicates with a unique key, and recv proactively pulls data from
send. For example, the following is the result of partitioning a graph onto two devices.
TensorFlow imposes no restrictions on partitioning: A node can be assigned to a device as
long as the computation can be done on that device.
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Graph after partitioning

learning rate

The execution of a subgraph is managed by an executor local to the device the subgraph is
assigned to. The executor starts from the source nodes and repeatedly executes the ready
nodes. A node, with the exception of Merge node, becomes ready when all its inputs are
available. Note that all recv nodes in a subgraph are considered to be source nodes.

Without control flow, graph execution is conceptually quite straightforward: Every node is
executed exactly once and the execution is done when all nodes are executed. Control flow
introduces quite a bit of complexity. A node now can be executed any number of times
including 0. The executor needs to be able to manage the (possibly concurrent) execution of
multiple instances of the same node, and to determine the completion of graph execution.

To keep track of the tensors generated during execution, tensors inside the executor are
represented as a tuple d = (value, is_dead, tag), where value is the actual tensor, is_dead is a
boolean indicating if the tensor is on an untaken branch of a conditional, and tag is a string
uniquely identifying the tensor (and the execution instance of the node producing the tensor).
Intuitively, the tag defines an execution context, and within an execution context a node is
executed at most once. The tag is part of the communication key of a send/recv pair to
distinguish multiple invocations of the same send/recv pair.
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The executor follows the following rules of execution (Note: All the inputs of a node must have
the same tag.)

e Switch(p,d)=(r,, r,):
r, = (value(d), p || is_dead(d), tag(d))
r, = (value(d), !p || is_dead(d), tag(d))

e Merge(d,, d,) =r:
r = if is_dead(d,) then d, else d,

e Enter(d, frame_name) =r:
value(r) = value(d)
is_dead(r) = is_dead(d)
tag(r) = tag(d)/frame_name/0

e Exit(d)=r:
value(r) = value(d)
is_dead(r) = is_dead(d)
tag(r) = tag, where tag(d) = tag,/frame_name/n

e Nextlteration(d) = d, :

value(d,) = value(d)

is_dead(d,) = is_dead(d)

tag(d,) = tag,/frame_name/(n+1) where tag(d) = tag,/frame_name/n
e Op(d,,...,d )=(ry,....r):

value(r;) = Op.Compute(value(d,), ..., value(d,,)) if lis_dead(r,)

is_dead(r) = any(is_dead(d,), ... is_dead(d)), for all i

tag(r) = tag(d,), for all i

The last rule is for all non-control-flow nodes. Note that the actual computation is performed
only when all the inputs are not dead. If there is a dead input, we will skip the computation and
propagate a dead signal downstream. This propagation of deadness is used to support
distributed execution of control flow.

Distributed Conditional Execution
For distributed execution, a cond can be partitioned onto multiple devices, as shown below.
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Since any recv node is a source node and can start unconditionally, the recv on device B can
start even when it is on the untaken branch of the cond. In order to make the recvs on untaken
branch happy, we propagate the is_dead flag across devices from the send to the recv. The
propagation may continue on any number of devices. This simple propagation scheme handles
distributed execution of nested conditionals, and interacts well with distributed execution of
while loops.

Distributed While Loop

For distributed execution, a while loop, in particular the loop body, can be partitioned onto
multiple devices. If we naively apply the partitioning scheme of adding send/recv nodes for
cross-device edges, the local executors on the devices wouldn’t have enough information to
run the while loop correctly.

Device A Device B

Send | R+ o ]

o e ]

Maive partitioning breaks control flow

Let us use a simple example to illustrate the problems. In the example above, Op is in the loop
body and is assigned to device B. A naive partitioning would simply break the edge from
Switch to Op with a pair of send/recv nodes. However, this would not work since device B
would not know the recv and Op nodes are part of a while loop and would terminate the
execution after just one iteration. The solution is to rewrite the dataflow graph, adding a
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control-loop state machine (as shown below in the right bottom corner of device B) in every
partition. A scalar tensor 0 is used as the input to the Enter node of a control-loop.

Device A

Device B

Send

These control loops provide enough information to allow the executors on the devices to run
independently as before, communicating with each other via the send/recv nodes. Note that the
dotted lines are control edges.

In more detalil, let's us first look at the base case that the while loop runs only 0 iteration:

On device A, the execution starts with the nodes Enter, Merge, P, and Switch. Because
P is false, the Send connected to Switch would propagate a dead signal to device B,
and the Exit also runs, enabling concurrent execution of nodes outside the loop. The
Send connected to P would send the boolean tensor False to device B. The Recv can
also be executed, waiting for the value from device B.

On device B, the execution starts with the nodes Enter and Merge. The execution of
Merge enables the two Recvs. The Recv for Switch would receive False so Next would
get a dead tensor. Next stops the propagation of deadness. The Recv for Op would get
a dead tensor so the Send for Op would send a dead tensor back to device A. At this
point, device B has no outstanding ops so the execution terminates.

Back on device A, the Recv for Next gets a dead tensor. The Next runs, and since it
stops the propagation of deadness, device A has no outstanding ops and the execution
terminates.

Now suppose the while loop runs one or more iterations:

On device A, since P is True at the first iteration, a real tensor is sent to device B. The
Recv is executed, waiting for the value from device B.

On device B, the control-loop state machine runs and enables the Recvs. The Recv for
Op gets a real tensor from device A; the Op is performed and the Send sends a real
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tensor back to device A. The Recv for Switch gets the boolean tensor True. The Next
and Merge are executed, further enabling the Recvs for the next iteration.

e Back on device A, the Recv gets a real tensor. The Next, Merge, and P are executed.
Depending on the value of P, either the base case or a new iteration will be executed.

Note that there is a lot of parallelism in the execution. For example, device B can start the next
iteration or exit once it receives the value of P. A participating device can have multiple
iterations running in parallel, and two participating devices can work on different iterations of
the same loop.

The overhead for the distributed execution of a while loop is that every participating device
needs to receive a boolean tensor at each iteration from the device that produces P. Given the
parallelism in the execution, the overhead should be largely hidden.

The following shows what the dataflow graph looks like when a while loop is partitioned across
multiple devices. A control-loop is added to each partitions and controls the Recvs inside the
while loop. The graph after rewriting is semantically equivalent to the original graph.

Device A Device B
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-I'-I Send | Recy o X

Switch j T T

Next
Send |
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Graph partitions after rewriting

For nested while loops, we just stack the control-loops as follows. Note that if a device only has
nodes of the outer loop, we don’t add the control-loop for any inner loop on that device.
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Automatic differentiation

TensorFlow supports automatic differentiation. A user can, for example, define a neural
network with a loss function, and TensorFlow will automatically derive and build the
backpropagation dataflow graph. This section explains how TensorFlow automatically builds
the backpropagation graph in the presence of cond and while_loop. We assume that the reader
has some understanding of how automatic backpropagation works. (See
http://colah.github.io/posts/2015-08-Backprop/ for an excellent article on backpropagation.)

The backpropagation algorithm traverses the ops in the forward graph in reverse order, and
constructs the gradient graph incrementally by calling the gradient functions of the ops. The
gradient function of an op defines the subgraph that computes the symbolic gradient of the op.
A gradient function may use the input/output values of the op, so some tensors produced in the
forward computation will be kept around for awhile until it is used in the backprop. For example,
the following shows a forward op and its gradient graph. G(Op) is the gradient subgraph of Op.
The values of x and y will be kept in memory until G(Op) is executed.
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Once the entire dataflow graph is constructed, the TensorFlow runtime automatically partitions
the graph and distributes the execution on multiple devices. So the gradient computation in
TensorFlow will also be distributed to run on multiple devices.

Intuitively, in the context of our high-level constructs of cond and while_loop, the
backpropagation of the control flow operators is just to reverse the flow in the following way:
The gradient of Exit is Enter; the gradient of Switch is either Merge (for cond) or Nextlteration
followed by Merge (for while_loop); the gradient of Merge is Switch; the gradient of
Nextlteration is Identity; and the gradient of Enter is Exit. TensorFlow supports the
backpropagation of nested conditionals and while loops.

Backpropagation of Conditional

Intuitively, the gradient of cond (p, fnl, £fn2) iscond(p, g fnl, g fn2) where

g fnland g fn2 are the gradients of £nl and £n2 respectively. The following shows the
basic backpropagation of cond when cond is not nested in a while loop. We assume that Op is
on the true branch of the cond. A cond nested in a while loop requires more work to remember
the value of p for every iteration of the forward loop. We will get to it later when we look at the
backprop of a while loop.
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The forward Merge is turned into a Switch, which uses the same predicate p as the forward
Switch. The gradient g, is backpropped to both branches of the Switch. The forward Switch is
turned into a Merge. If only one branch of a froward Switch is used in the forward, we add a
zero, as shown below, to ensure that there is always a live gradient flowing through the Merge
in the backprop. The zero is guarded by a Switch so it will only be sent to the Merge when p is
false.

Forward Backprop
)
Switch

Tx 0 9,

Switch [€———
p Merge

g, or0

Backpropagation of While Loop
Intuitively, the gradient of while loop (pred, body) is justa while loop of the form:
def pred(i, ): return i < N

while loop(pred, g body, [0] + g vars)
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Where N is the number of iterations that the forward while loop runs, g body is the gradient of
the forward loop body, and g vars is the initial values for the loop variables. As we will see
later, g_vars includes the initial gradients for the loop variables of the forward while loop. The
following is roughly what the graph of a while loop and its backprop while loop looks like:

Forward Backprop
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Note that the backprop loop is controlled by N, the number of iterations the forward loop will
run. This means that we assume that pred is not trainable. G(Body) is the gradient of Body.
Body may again contain while loops so this construction may occur recursively to handle
nested while loops.

This description so far is rather a big oversimplification. For example, N is not known statically
at the graph construction time. More importantly, G(Body) may use values produced by the
forward loop body and we want to keep these values around so to avoid recomputing them in
the backprop. The solution is to rewrite the graph of the forward while loop to add the logic of
computing and/or saving the values needed in the backprop.

To compute N, we add the following subgraph into the forward while loop. So N will be

dynamically computed by the forward loop and fed as the initial value of the count loop variable
of the backprop loop.
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To reuse forward values in backprop loop, we automatically detect, during the construction of
the backprop while loop, the forward values that are needed in the backprop. For each such
forward value x, we automatically introduce a stack and add nodes in the forward loop to save
its value at each iteration to the stack. The backprop loop uses the values from the stack in the

reverse order. The stack lives outside the forward and backprop loops and is shared by the
two loops.

Forward Backprop
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The actual graph construction is actually more subtle and complicated than this. For now let us
ignore these details. Here are some of the problems:

- For correctness we ensure that the stack pushes and pops are ordered by the iterations
of their respective loops. We also ensure the stack pushes in the forward are ordered
before the stack pops in the backprop. The orderings are enforced using control edges.
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- For performance we make the stack push and pop operations to be asynchronous so
they could run in parallel with the actual computation. For example, op (and even future
iterations) can run in parallel with Push.

- Ifthe op is inside a cond nested inside the while loop, the push and pop operations
must be guarded properly by the predicate of the cond.

- If the value is immediately reduced by a reduction op (e.g., Shape, Rank, or Size) in the
backprop, we move the reduction op to the forward loop to reduce the memory usage.

As described before, the gradient of Enter is Exit. For loop variables, that is all it does. For loop
constants, we also add a subgraph to accumulate their gradients, as shown below.

Forward Backprop
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Suppose x is a loop constant in the forward. In the backprop, a partial gradient is generated for
x at every iteration. So we add small accumulation subgraph in the backprop to add all of
these partial gradients together. The final g, at Exit is the sum of all the partial gradients. Note
that the accumulation is done eagerly, bounded by the number of parallel iterations. This is
different from static unrolling, where the use of AddN would require all the partial gradients
alive at the same time.

This construction works for both nested conditionals and loops. For a cond nested in a while
loop, we introduce a stack to save the value of the predicate at each forward iteration, and use
the values (in the reverse order) from the stack in the backprop. For nested loops, this
construction is called recursively when we encounter an inner while loop nested in the loop
body.

One important optimization is memory swapping. As we have seen, for each forward value v
that is needed in backprop, we save its values at all iterations v,, ..., v, in a stack so we would
reuse them in the backprop. This can be a limitation for training on devices such as GPUs
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where memory is limited. We use memory swapping to asynchronously move the values
stored in the stacks from GPU to CPU, and move them back in GPU memory when they are
needed in backprop.
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